Similarity Network Fusion Based on Random Walk and Relative Entropy for Cancer Subtype Prediction of Multigenomic Data

Author:

Liu Jian12ORCID,Liu Wenfeng3,Cheng Yuhu12,Ge Shuguang12,Wang Xuesong12ORCID

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

3. Department of Information Center, Weihai Ocean Vocational College, Rongcheng 264300, China

Abstract

It is a crucial task to design an integrated method to discover cancer subtypes and understand the heterogeneity of cancer based on multiple genomic data. In recent years, some clustering algorithms have been proposed and applied to cancer subtype prediction. Among them, similarity network fusion (SNF) can integrate multiple types of genomic data to identify cancer subtypes, which improves the understanding of tumorigenesis. SNF uses a dense similarity matrix to obtain the global information of the data, and the interconnection of samples between different categories will cause noise interference. Therefore, how to construct a more robust dense similarity matrix is an important research content to improve the performance of cancer subtype identification. In this paper, we proposed similarity network fusion based on random walk and relative entropy (R2SNF) for cancer subtype prediction. Firstly, the random walk algorithm was used to capture the complex relationship between samples in each genomic data. And the transition probability distribution of samples in the network was obtained. If two samples belong to the same class, the transition probability between the two samples is great. On the contrary, if the two samples do not belong to the same class, the transition probability between the two samples is small. In this way, the degree of correlation between samples can be well obtained, thereby reducing the noise interference caused by the interconnection of samples between different categories. Secondly, relative entropy was used to calculate the difference in the transition probability distribution between samples to construct a better dense similarity matrix which contains structural similarity information between samples. Thirdly, we iteratively fused the obtained dense similarity matrix with the KNN similarity matrix to construct the fused similarity matrix of all genomic data. Finally, by using spectral clustering, the fused similarity matrix was grouped into multiple clusters, which indicates the cancer subtypes. Experiments on seven cancer omics datasets show that the R2SNF algorithm performs well in identifying cancer subtypes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3