Affiliation:
1. College of Mechanical & Automotive Engineering, Anhui Polytechnic University, No. 54, Beijing Middle Road, Wuhu City, China
Abstract
Based on the parallel mechanism theory, a new vibration-isolating platform is designed and its kinetic equation is deduced. Taylor expansion is used to approximately replace the elastic restoring force expression of vibration-isolating platform, and the error analysis is carried out. The dynamic-displacement equation of the vibration-isolating platform is studied by using the Duffing equation with only the nonlinear term. The dynamic characteristics of the vibration-isolating platform are studied, including amplitude-frequency response, jumping-up and jumping-down frequency, and displacement transfer rate under base excitation. The results show that the lower the excitation amplitude, the lower the initial vibration isolation frequency of the system. The influence of the platform damping ratio ζ on displacement transfer rate is directly related to the jumping-down frequency Ωd and the external excitation frequency. The vibration-isolating platform is ideally suited for high-frequency and small-amplitude vibrations.
Funder
Natural Science Foundation of Anhui Province
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献