Development of Macroscopic Cell-Based Logistic Lane Change Prediction Model

Author:

Ng Christina1ORCID,Susilawati Susilawati1ORCID,Samad Kamal Md Abdus2ORCID,Leng Chew Irene Mei1

Affiliation:

1. School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia

2. Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjincho, Kiryu 376-8515, Japan

Abstract

This paper aims at developing a macroscopic cell-based lane change prediction model in a complex urban environment and integrating it into cell transmission model (CTM) to improve the accuracy of macroscopic traffic state estimation. To achieve these objectives, first, based on the observed traffic data, the binary logistic lane change model is developed to formulate the lane change occurrence. Second, the binary logistic lane change is integrated into CTM by refining CTM formulations on how the vehicles in the cell are moving from one cell to another in a longitudinal manner and how cell occupancy is updated after lane change occurrences. The performance of the proposed model is evaluated by comparing the simulated cell occupancy of the proposed model with cell occupancy of US-101 next generation simulation (NGSIM) data. The results indicated no significant difference between the mean of the cell occupancies of the proposed model and the mean of cell occupancies of actual data with a root-mean-square-error (RMSE) of 0.04. Similar results are found when the proposed model was further tested with I80 highway data. It is suggested that the mean of cell occupancies of I80 highway data was not different from the mean of cell occupancies of the proposed model with 0.074 RMSE (0.3 on average).

Funder

Federal Highway Administration

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3