Feature Extraction of EEG Signal upon BCI Systems Based on Steady-State Visual Evoked Potentials Using the Ant Colony Optimization Algorithm

Author:

Fernandez-Fraga S. M.1,Aceves-Fernandez M. A.2ORCID,Pedraza-Ortega J. C.2,Tovar-Arriaga S.2

Affiliation:

1. Department of Computer Systems Instituto Tecnológico de Querétaro, Av. Tecnológico s/n, Centro, CP 76000, Santiago de Querétaro, Mexico

2. Department of Engineering, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Centro Universitario, Las Campanas, CP 76010, Querétaro, Mexico

Abstract

This work presents the use of swarm intelligence algorithms as a reliable method for the optimization of electroencephalogram signals for the improvement of the performance of the brain interfaces based on stable states visual events. The preprocessing of brain signals for the extraction of characteristics and the detection of events is of paramount importance for the improvement of brain interfaces. The proposed ant colony optimization algorithm presents an improvement in obtaining the key features of the signals and the detection of events based on visual stimuli. As a reference model, we used the Independent Component Analysis method, which has been used in recent research for the removal of nonrelevant and detection of relevant data from the brain’s electrical signals and also allows the collection of information in response to a stimulus and separates the signals that were generated independently in certain zones of the brain.

Funder

National Institute of Technology of México

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting the dynamics of correlations in complex systems;Chaos, Solitons & Fractals;2024-01

2. EEG data based human attention recognition using various machine learning techniques: a review;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-12-28

3. Deep feature extraction from EEG signals using xception model for emotion classification;Multimedia Tools and Applications;2023-09-19

4. Design and Implementation of Minkowski Feature Selection for Machine Learning Techniques;2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS);2023-03-20

5. A novel total nitrogen prediction method based on recurrent neural networks utilizing cross-coupling attention and selective attention;Neurocomputing;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3