Decomposition of Fourth-Order Euler-Type Linear Time-Varying Differential System into Cascaded Two Second-Order Euler Commutative Pairs

Author:

Ibrahim Salisu1ORCID,Rababah Abedallah2ORCID

Affiliation:

1. Department of Mathematic Education, Tishk International University-Erbil, Kurdistan Region, Erbil, Iraq

2. Department of Mathematical Science College of Science, United Arab Emirates University, Al Ain 15551, UAE

Abstract

This paper presents decomposition of the fourth-order Euler-type linear time-varying system (LTVS) as a commutative pair of two second-order Euler-type systems. All necessary and sufficient conditions for the decomposition are deployed to investigate the commutativity, sensitivity, and the effect of disturbance on the fourth-order LTVS. Some systems are commutative, and some are not commutative, while some are commutative under certain conditions. Based on this fact, the commutativity of fourth-order Euler-type LTVS is investigated by introducing the commutative requirements, theories, and conditions. The fourth-order Euler-type LTVSs are investigated into commutative pairs of twice Euler-type second-order linear time-varying systems (LTVSs). The decomposition theories and conditions are derived, proved, and solved to simplify the use of commutativity for practical and industrial uses. Some fourth-order systems are sensitive toward change in initial conditions or parameters while others are not, and the effect due to disturbance also varies within systems. Furthermore, the stability and robustness of systems have so many issues. But we consider fourth-order Euler-type LTVS to observe, investigate, and tackle these issues. Lastly, the realization of fourth-order LTVS from cascaded two second-order systems can be laboratory experimented which is an open problem for future engineers to investigate. However, the theoretical results show a good agreement with the simulation results is considered in this work. Perhaps it might have unlimited physical applications in science and engineering as well as theoretical contribution. But beyond any reasonable doubt, the novelty is guaranteed because this study is the first of its kind that introduces the decomposition of the fourth-order Euler-type linear time-varying system (LTVS) as a commutative pair of two second-order Euler-type systems. Illustrative examples are presented to support the results.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3