Affiliation:
1. First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
2. National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
3. Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
4. Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease, and its conventional treatment has exhibited limited therapeutic efficacy. Qing Zao Fang (QZF), a traditional Chinese medicine formula, is used in the treatment of Sjögren’s syndrome, but its chemical composition is complex, and its pharmacological mechanism is not clear. Therefore, this study aims to explore the potential mechanism of QZF in the treatment of Sjögren’s syndrome based on network pharmacology and SS mouse model. The main active components and predicted targets of QZF were analyzed by network pharmacology. The SS mouse model was constructed and divided into 6 groups: control, SS, SS + hydroxychloroquine (HCQ)-treated, SS + low-dose QZF-treated, SS + medium-dose QZF-treated, and SS + high-dose QZF-treated group. Immunohistochemical, ELISA, and qRT-PCR assays were performed to detect the expressions of targets associated with SS. TUNEL staining was used to detect apoptosis. Cumulatively, 230 active compounds and 1883 targets of QZF were identified. There were 227 common targets for QZF and SS. The effective active ingredients were stigmasterol, neocryptotanshinone II, neotanshinone C, miltionone I, and beta-pinene. It mainly acts on biological processes such as inflammatory response, chemokine metabolic process, and immune response as well as pathways such as FoxO signaling pathway, Yersinia infection, HIF-1 signaling pathway, and TNF signaling pathway. In SS mice, levels of AKT1, HIF-1α, TNF-α, IL-6, and IL-17A were increased, while decreased after QZF treatment. In contrast, IL-10 levels were decreased in SS mice and increased in QZF-treated mice. In addition, QZF reduced apoptosis in the submandibular gland tissue compared to SS mice. It can be concluded that the QZF in treatment of SS is the result of the combined action of multiple components, multiple targets, and multiple pathways. This study improves the understanding of the link between QZF and SS on molecular mechanisms.
Funder
Tianjin University of Traditional Chinese Medicine postgraduate research innovation project
Subject
Complementary and alternative medicine