A Modified Transfer Matrix Method for Modal Analysis of Stepped Rotor Assembly Applied in the Turbomolecular Pump

Author:

Zhang Yiming12,Tang Jiqiang23,Wen Tong23ORCID

Affiliation:

1. Beijing Engineering Research Center of High-Speed Magnetically Suspended Motor Technology and Application, Beihang University, Beijing, China

2. Ningbo Institute of Technology, Beihang University, Ningbo, China

3. Research Institute for Frontier Science, Beihang University, Beijing, China

Abstract

An accurate modal analysis of the stepped rotor assembly is significant in the design process of rotors. The transfer matrix method (TMM) is widely used in the modal analysis of the rotor. However, the influences of the step and the assembling modes are not considered in the traditional TMM. In this paper, a modified transfer matrix method is presented for the modal calculation of the rotor in the turbomolecular pump. The stiffness reduction of stepped segments and the effect of assembled components are considered in this modified method. First of all, the traditional transfer matrix model is built. Then, the stepped segments of the rotor are changed into conical segments and the lumped mass model of conical segments is calculated. Next, the conicities of conical segments are analyzed and relations between conicities and dimensions of the rotor are discovered. Finally, the stiffness factors which can describe the effects of different assembling modes are introduced and optimized. The optimized stiffness factors are analyzed and explained from the perspective of contact stress. The modal of the stepped rotor assembly could be computed with high accuracy by using this method.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3