Performance Optimization of Surface Plasmon Resonance Imaging Sensor Network Based on the Multi-Objective Optimization Algorithm

Author:

Wang Zhiyou12ORCID,Wang Maojin12,Chen Ying12,Hu Fangrong23ORCID

Affiliation:

1. School of Electronic Communication and Electrical Engineering, Changsha University, Kaifu District, Changsha, China

2. Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, China

3. Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

In this work, we report performance optimization of a wireless sensor network (WSN) based on the plain silver surface plasmon resonance imaging (SPRi) sensor. At the sensor node level, we established the refractive index-thickness models for both gold and silver in the sensor and calculated the depth-width ratio (DWR) and penetration depth (PD) values of the sensor of different gold and silver thicknesses by the Jones transfer matrix and Kriging interpolation. We optimized the DWR and PD simultaneously by using the multi-objective optimization genetic algorithm (MOGA). In the following performance optimization of WSN, we simultaneously optimized the transmission success rate and information dimension with the number of nodes and transmission failure rate of the sensor node as variables by the same algorithm. By calculating the information dimension and the transmission success rate of each Pareto optimal solution, we obtained the number of nodes and transmission failure probability of the node available for practical deployment of WSN. The above results indicate that the Pareto optimal solution set obtained from MOGA can help to provide the best solution for the optimization of some certain performance parameters and also assist us in making the trade-off decision in the structure design and network deployment if optimal values of all the performance parameters can be obtained simultaneously.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3