Investigation on Viscoelastic Poisson’s Ratio of Composite Materials considering the Effects of Dewetting

Author:

Cui Huiru1ORCID,Ma Weili2ORCID,Lv Xuan3ORCID,Li Changyuan1ORCID,Ding Yimin1ORCID

Affiliation:

1. College of Defense Engineering, Army Engineering University of PLA, Nanjing 210007, China

2. School of Science, Chang’an University, Xi’an, 710064, China

3. Hubei Key Laboratory of Advanced Aerospace Propulsion Technology (System Design Institute of Hubei Aerospace Technology Academy), Wuhan 430040, China

Abstract

A direct numerical method is introduced herein to investigate time-dependent Poisson’s ratio of solid propellant based on a representative volume element (RVE) model. Time-dependent longitudinal and transverse strains are considered in the calculation of time-dependent Poisson’s ratio under the relaxation test. The molecular dynamics (MD) packing algorithm is used to generate the high area fraction RVE model of solid propellants consisting of ammonium perchlorate (AP) particles whose radius follows lognormal distribution. In order to simulate the dewetting response of the interface between particles and matrix, the PPR model is modified and utilized during the analysis. Time-dependent Poisson’s ratio is measured under different cohesive parameters, loading conditions (loading temperature, loading rate, and fixed strain), and area fraction. Numerical results reveal that time-dependent Poisson’s ratio can be nonmonotonic or monotonic according to the different cohesive parameters. A concept of critical cohesive parameters is proposed to judge whether the monotonic property of time-dependent Poisson’s ratio appears or not. According to the numerical analysis, the cohesive contact and the shrinkage of the bulk element are two main factors which will control the change of monotonic property. All time-dependent Poisson’s ratios will increase at the beginning of the relaxation stage because the effects of cohesive contact can be ignored compared with the large shrinkage of the bulk element. However, with the increased shrinkage of the bulk element, the increased cohesive contact will defend further shrinkage at the same time. Although the shrink of the bulk element never changes its direction, the ratio of the transverse strain to longitudinal strain may decrease or keep increasing in this stage. When transverse and longitudinal strains stop to change, all time-dependent Poisson’s ratios will achieve their equilibrium values.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3