Modelling and Deliberation of Multireinforcement Surface on Tribothermal Adsorption Performance of Nickel Alloy Matrix Hybrid Nanocomposite

Author:

Devi G. Ramya1,Priya C. B.2ORCID,Dineshbabu C.3,Karthick R.4,Thanigavelmurugan K.5,Paramasivam Prabhu6ORCID

Affiliation:

1. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105 Tamil Nadu, India

2. Department of Production, National Institute of Technology, 620015, Trichy, Tamil Nadu, India

3. Department of Mechanical Engineering, Kongunadu College of Engineering and Technology, Trichy, 621215 Tamil Nadu, India

4. Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, 639113 Tamil Nadu, India

5. Department of Mechanical Engineering, Loyola Institute of Technology, Chennai, 600123 Tamil Nadu, India

6. Department of Mechanical Engineering, College of Engineering and Technology, Mattu University, 318, Ethiopia

Abstract

The present research work is aimed at developing a nickel alloy (Ni-Cr) matrix hybrid nanocomposite comprising 5 wt%, 10 wt%, and 15 wt% of alumina nanoparticles (Al2O3) size of 50 nm with stable weight percentage (5 wt%) of titanium dioxide (TiO2) nanoparticle via vacuum die casting process for an automobile brake pad application. The deliberation of multireinforcement surface on nickel alloy matrix tribological performance was evaluated by constant sliding distance (200 m) on dry sliding condition via rotating pin on disc apparatus with different loading conditions of 10 N, 30 N, 50 N, and 70 N under the sliding velocity of 0.25 m/sec, 0.5 m/sec, and 0.75 m/sec, respectively. The influences of alumina and titanium dioxide nanoparticles in the nickel alloy matrix resulted in the thermal conductivity increasing by 18% compared to unreinforced nickel alloy. After temperature drop, the coefficient of thermal expansion for nickel alloy hybrid composite decreases progressively with increased reinforcement content as 10 wt% Al2O3/5 wt% TiO2. Further inclusion of both Al2O3 and TiO2 in nickel alloy was increased nominally. The thermal adsorption characteristic on composites mass loss was decreased while temperature increased from 28°C to 1000°C.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3