Exploration of the Shared Gene Signatures between Myocardium and Blood in Sepsis: Evidence from Bioinformatics Analysis

Author:

Long Qi12ORCID,Li Gang12ORCID,Dong Qiufen12ORCID,Wang Min12ORCID,Li Jing12ORCID,Wang Liulin12ORCID

Affiliation:

1. Department of Critical Care Medicine, Hubei Province Hospital of Traditonal Chinese Medicine, 856 Luoyu Street, Wuhan, Hubei 430061, China

2. Hubei Province Academy of Traditonal Chinese Medicine, 856 Luoyu Street, Wuhan, Hubei 430061, China

Abstract

Background. Septic cardiomyopathy is widespread during sepsis and has adverse effects on mortality. Diagnosis of septic cardiomyopathy now mainly depends on transthoracic echocardiogram. Although some laboratory tests such as troponin T and atrial brain natriuretic peptide play a role in the diagnosis, specific blood biochemistry biomarkers are still lacking. Objective and Methods. In our study, we sought to find potential biological markers from genes and pathways that are covariant in the blood and myocardium of septic patients. Bioinformatics and machine learning methods were applied to achieve our goal. Datasets of myocardium and peripheral blood of patients with sepsis were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected and received functional enrichment analysis. Unsupervised hierarchical clustering analysis was performed to identify the subtypes of sepsis. Random forest, lasso regression, and logistic regression were used for variable screening and model construction. Internal and external validation sets were applied to verify the efficiency of the model in classifying disease and predicting mortality. Results. By defining significance for genes using Student’s t -test, we obtained 1,049 genes commonly changed in both myocardium and blood of patients with sepsis. The upregulated genes (LogFC >0) were related to inflammation pathways, and downregulated (LogFC <0) genes were related to mitochondrial and aerobic metabolism. We divided 468 sepsis patients into two groups with different clinical result based on the mortality-related commonly changed genes (104 genes), using unsupervised hierarchical clustering analysis. In our validation datasets, a six-gene model (SMU1, CLIC3, SP100, ARHGAP25, DECR1, and TNS3) was obtained and proven to perform well in classifying groups and predicting mortality. Conclusion. We have identified genes that have the potential to become biomarkers for septic cardiomyopathy. Additionally, the pathophysiological changes in the myocardium of patients with sepsis were also reflected in peripheral blood to some extent. The co-occurring pathological processes can affect the prognosis of sepsis.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3