Bone Response to Titanium Implants Coated with Double- or Single-Stranded DNA

Author:

Miyamoto Nagahiro1ORCID,Yamachika Rina1,Sakurai Toshitsugu2,Hayakawa Tohru3ORCID,Hosoya Noriyasu1

Affiliation:

1. Department of Endodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan

2. Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan

3. Department of Dental Engineering, Tsurumi University School of Dental Medicine, Yokohama, Japan

Abstract

We aimed to evaluate in vivo bone response and in vitro apatite formation to titanium (Ti) implants, coated with double-stranded DNA (DNA-d) or single-stranded DNA (DNA-s), and to compare the influence in different structure of DNA, double strand and single strand on bone response and apatite formation. The bone responses to multilayered DNA-d/protamine or DNA-s/protamine coating implants were evaluated after implantation into the extracted sockets of rat maxillary molars. Apatite formation on either coating surface after immersion in simulated body fluid (SBF) was evaluated using the quartz crystal microbalance (QCM) method. DNA-d/protamine and DNA-s/protamine coatings produced more roughened and hydrophilic surfaces than untreated Ti. Animal experiments showed that higher bone-to-implant ratios were achieved 3 and 6 weeks after implantation using DNA-d/protamine and DNA-s/protamine coatings compared with Ti. QCM measurements revealed that each coating contributed to significant earlier apatite formation in SBF. We conclude that both DNA-d/protamine and DNA-s/protamine coatings enhanced early bone formation. We suggest that a DNA-multilayer coating is useful for the surface modification of a Ti implant.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3