Research on Parameter Distribution Features of Photovoltaic Array under the Cover and Shadow Shading Conditions

Author:

Zhu Honglu12,Yu Cao23,Lu Lingxing2,Lian Weiwei2,Yao Jianxi12ORCID,Hu Yang1ORCID

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Changping District, Beijing, China

2. School of Renewable Energy, North China Electric Power University, Changping District, Beijing, China

3. China Three Gorges New Energy Co., Ltd, Beijing, China

Abstract

The outdoor operating photovoltaic arrays have two different shading conditions, shadowing and covering. The shading causes a decrease in output power of photovoltaic system and may bring hot spots which causes physical damage to the array. This paper studies the electrical parameter distribution feature of photovoltaic array under different shading conditions by means of analog simulation and empirical testing. Through introducing theoretical computational method of the electrical parameters, it describes the distribution features of the electrical parameters of photovoltaic array. The results indicate that the influence of local shadowing on the current of array can be neglected. Shadowing decreases the optimal operating voltage while covering leads to a decrease in the optimal operating voltage and the open-circuit voltage. The drop magnitude of voltage is associated with the number of the shaded cell strings and the string voltage. The two shading types can be identified on the basis of distribution rules of open-circuit voltage and optimal operating voltage. Simulations and experiments verify the consistency of the rules. Relevant conclusions provide a reference for modeling, online fault diagnosis, and optimization design of the maximum power tracking algorithm of photovoltaic array under different shading conditions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Reference8 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3