Numerical Studies on the Failure Process of Heterogeneous Rock Material with Preexisting Fracture under Uniaxial Compression

Author:

Zhang Qi1ORCID,Ma Dan2ORCID,Liu Jiangfeng3ORCID,Zhang Kai3ORCID,Fan Zhiqiang4ORCID

Affiliation:

1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

4. Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024, China

Abstract

It is of vital importance to understand the failure processes of the heterogeneous rock material with different kinds of preexisting fractures in underground engineering. A damage model was introduced to describe the initiation and propagation behaviors of the fractures in rock. Reduced parameters were applied in this work because the microcracks in the rock were neglected. Then, the numerical model was validated through comparing the simulation results with the laboratory observations. Finally, a number of numerical uniaxial compressive tests were performed on heterogeneous rock specimens with preexisting fracture, and the influence of the heterogeneity of the rock and the angle and length of the preexisting fractures was fully discussed. The results showed that the brittleness of the rock increased with the increase of the homogeneity index, and tensile failure was the main failure form for relatively heterogeneous rock, whilst shear failure was the main failure form for relatively homogeneous rock. The uniaxial compressive strengths of the specimens with the angles of 0, 30, 45, and 60 of the preexisting fracture dropped 62.7%, 54.7%, 46.6%, and 38.2% compared with that of the intact specimen; the tensile cracks were more difficult to form, and the required load was increasing with the increase of the angle of the preexisting fracture; besides, antiwing cracks were difficult to form than wing cracks because the tensile stress in wing cracks’ area was greater than that in antiwing cracks’ area. The uniaxial compressive strengths of the specimens with the lengths of 20 mm, 25 mm, 30 mm, and 35 mm of preexisting fracture dropped 38.6%, 46.6%, 53.4%, and 56.6% compared with that of the intact specimen, and the damage conditions of the samples with different lengths of preexisting fracture were similar.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3