Phase Equilibrium and Crystallization Process of the Ternary System KCl-(NH2)2CO-H2O at Different Temperatures

Author:

Chen Liqiong1ORCID,Li Tianxiang1,Shi Lianjun2ORCID,Wang Shihan2ORCID,Meng Zeyu1ORCID,Zhang Jie1ORCID,Zhu Jing1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China

2. WengFu Group, Guiyang 550014, China

Abstract

The phase equilibriums of the ternary system KCl-(NH2)2CO-H2O at 303.15 K, 323.15 K, 333.15 K, and 343.15 K were studied using the isothermal dissolution equilibrium method, in which the composition of equilibrium solid phase was determined by Schreinemaker’s wet residue method and X-ray diffraction (XRD) method. It was found that the ternary system is a simple cosaturated system, without the formation of neither double salt nor solid solution. Wilson and NRTL models were employed to correlate in the solubility data of the system at experimental temperatures. The maximum values of RAD and RMSD of the Wilson model were 2.18 × 10−2 and 0.83 and those of the NRTL model were 1.69 × 10−2 and 0.40, respectively. The two models were utilized to forecast solubility data at various temperatures, and the obtained outcomes were in line with the literature data. Based on the experimental solubility data at 343.15 K, the cooling crystallization process of the system was monitored online by focused beam reflectance measurement (FBRM) and particle video microscope (PVM). The crystal products were characterized by XRD, scanning electron microscope (SEM), and energy dispersive spectrometry (EDS). The results showed that the precipitation of (NH2)2CO occurred during the crystallization process, and this was followed by KCl. KCl was formed on the surface of (NH2)2CO crystal. The crystal was a simple mixture containing KCl and (NH2)2CO.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3