Affiliation:
1. Air Force Engineering University, Xi’an, Shaanxi 710051, China
Abstract
In deep neural networks, the activation function is an important component. The most popular activation functions at the moment are Sigmoid, Sin, rectified linear unit (ReLU), and some variants of ReLU. However, each of them has its own weakness. To improve the network fitting and generalization ability, a new activation function, TSin, is designed. The basic design idea for TSin function is to rotate the Sin function 45° counterclockwise and then finetune it to give it multiple better properties needed as an activation function, such as nonlinearity, global differentiability, unsaturated property, zero-centered property, monotonicity, quasi identity transformation property, and so on. The first is a theoretical derivation of TSin function by formulas. Then three experiments are designed for performance test. The results show that compared with some popular activation functions, TSin has advantages in terms of training stability, convergence speed, and convergence precision. The study of TSin not only provides a new choice of activation function in deep learning but also provides a new idea for activation function design in the future.
Funder
National Natural Science Foundation of China
Subject
Computer Science Applications,Software
Reference21 articles.
1. WerbosP.Beyond regression: new tools for prediction and analysis in the behavioral sciences1974CambridgeHarvard UniversityPh.D. Thesis
2. Learning representations by back-propagating errors
3. Long Short-Term Memory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献