Accurate Object Recognition with Assembling Appearance and Motion Information

Author:

Chang Yongxin123ORCID,Yu Huapeng123,Xu Zhiyong1,Zhang Jing2,Gao Chunming2

Affiliation:

1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

2. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China

3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

How to effectively detect object and accurately give out its visible parts is a major challenge for object detection. In this paper we propose an explicit occlusion model through integrating appearance and motion information. The model combines together two parts: part-level object detection with single frame and object occlusion estimation with continuous frames. It breaks through the performance bottleneck caused by lack of information and effectively improves object detection rate under severe occlusion. Through reevaluating the semantic parts, the detecting performance of partial object detectors is largely enhanced. The explicit model enables the partial detectors to have the capability of occlusion estimation. By discarding the geometric representation in rigid single-angle perspective and applying effective pattern of objective shape, our proposed approaches greatly improve the performance and robustness of similarity measurement. For validating the performance of proposed methods, we designed a comparative experiment on challenging pedestrian frame sequences database. The experimental results on challenging pedestrian frame sequence demonstrate that, compared to the traditional algorithms, the methods proposed in this paper have significantly improved the detection rate for severe occlusion. Furthermore, it also can achieve better localization of semantic parts and estimation of occluding.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3