Design of Quantitative Trading System Based on Data Mining Method under Software and High-Performance Computing

Author:

Feng Shizhou12,Du Jing3ORCID

Affiliation:

1. Chongqing College of Mobile Communication, Chongqing 401520, China

2. Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing 401420, China

3. Chongqing College of International Business and Economics, Chongqing 401520, China

Abstract

The size of funds managed by all hedge funds in the world has exceeded 2.7 trillion US dollars. The funds of various funds and asset management products managed by quantitative investment account for about 30% of the total global trading volume, and in various large stock exchanges around the world, various quantitative investment methods contribute nearly 50% volume of transactions. The construction of a quantitative trading strategy requires first statistical analysis of the information in the securities and futures market and then backtesting the quantitative model with historical data. In view of the practical application of quantitative trading, this study designs a quantitative trading system based on the data mining method. The main development tool used is the numerical computing software MATLAB, and four cores are designed: quantitative stock selection, strategy backtesting, time-series analysis, and portfolio management. The system supports modules for simple trading decisions. It abandons the traditional method of predicting the absolute value of the future price of stock index futures and adopts a new method of predicting the future price trend of stock index futures. This method avoids the huge impact of the accuracy of the absolute value of the prediction on the final investment in the traditional method and also reduces the high dependence of investors on the accuracy of the absolute value. This study also introduces the support-vector machine algorithm in data mining and the quantitative trading system model in data mining. The accuracy of investment transactions in the experiment is also simulated by using the support-vector machine.

Funder

Project of Association of Fundamental Computing Education in Chinese Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3