Stability Evaluation of Massive Landslides Using Ensembled Analysis of Time-Series InSAR and Numerical Simulation along the Yellow River, Northwestern of China

Author:

Tian Chengcheng12,Tian Hao12ORCID,Li Chunyang12,Chen Feifei12

Affiliation:

1. Qinghai Survey Institute of Hydrogeology and Engineering & Environmental Geology, Xining, 810000 Qinghai, China

2. Qinghai Provincial Key Laboratory of Hydrogeology and Geothermal Geology, Xining, 810000 Qinghai, China

Abstract

Loess landslides are a major geological disaster in the southeastern Qinghai Province, causing huge economic losses and casualties. The particularity of loess determines the disaster initiation mechanism, disaster mode, genetic mechanism, and complexity of the evolution process. This paper studies the deformation and stability analysis of the Quwajiasa large-scale multislip loess landslide in the Yellow River Basin from the perspective of field investigation, Interferometric Synthetic Aperture Radar (InSAR) monitoring, and numerical simulation. This study determines the deformation characteristics and genetic mechanism of the landslide through on-site field investigation, then quantitatively evaluates the overall deformation of the landslide using InSAR monitoring, locates the strong deformation area, and finally determines the control relationship between the two sliding surfaces on the landslide deformation using FLAC3D numerical simulation, obtaining the stability coefficient of the two sliding surfaces. The landslide is divided into seven engineering geological zones. The deformation history of the landslide is studied using InSAR technology. Results show that the landslide can be divided into significant deformation areas and no significant deformation areas. Two strong deformation areas are found. The FLAC3D numerical simulation results show that the deformation and stability of the right side of landslide are controlled by sliding surface 1, and the deformation and stability of the left side are controlled by sliding surface 2. The landslide is in an unstable state overall. The research done in this paper proposes a basis for the treatment of the Quwajiasa landslide.

Funder

Department of Natural Resources

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3