Authenticity Assessment of (E)-Cinnamic Acid, Vanillin, and Benzoic Acid from Sumatra Benzoin Balsam by Gas Chromatography Combustion/Pyrolysis Isotope Ratio Mass Spectrometry

Author:

Mao Deshou1ORCID,Hong Liu1,Fu Lei1,Li Zhiyu1,Chen Jianhua1,Zhang Chengming1,Wu Yiqin1,Xiong Wen1,Wang Jin1ORCID

Affiliation:

1. Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, China

Abstract

Authenticity assessment of (E)-cinnamic acid, vanillin, and benzoic acid from various origins (n = 26) was performed using gas chromatography-isotope ratio mass spectrometry coupled with combustion and pyrolysis mode (GC-C/P-IRMS). For that reason, the above three compounds (1–3) from synthetic, natural, and Sumatra benzoin balsam (laboratory prepared, adulterated, and commercial) were investigated. The δ13CV-PDB and δ2HV-SMOW values for compounds 1–3 from synthetic samples (S1–S5) ranging from −26.9 to −31.1‰ and 42 to 83‰, respectively, were clearly different from those of authentic samples (N1–N4, L1–L9) varying from −29.8 to −41.6‰ and −19 to −156‰. In adulteration verification testing, for compounds 1 and 3, both δ13CV-PDB and δ2HV-SMOW data of A1 (5.0% added) and A2 (2.5% added) except A3 (0.5% added) fell into the synthetic region, whereas for compound 2, the δ2HV-SMOW data of adulterated samples (A1–A3) fell into the synthetic region, and even the lowest adulterated sample A3 is no exception. With this conclusion, some commercial Sumatra benzoin balsam samples were identified to be adulterated with synthetic 1 (C1, C3, and C5) and synthetic 2 (C3, C4, and C5) but not with synthetic 3. GC-C/P-IRMS allowed clear-cut differentiation of the synthetic and natural origin of 1, 2, and 3 and definite identification of whether a Sumatra benzoin balsam was adulterated or not.

Funder

Foundation of China Tobacco Yunnan Industrial Co. Ltd.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3