Knocking Out of CEACAM1 Can Reduce Oxidative Stress and Promote Cell Proliferation in the HPMVECs under Hypoxia

Author:

Li Zhixuan1,He Xiaokang1,Zhang Xueting1,Zou Junhua1,Li Hao2,Wang Jing2ORCID

Affiliation:

1. Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

2. Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

Abstract

Pulmonary hypertension (PH) induced by hypoxia is common in clinical practice and often suggests a poor prognosis. The oxidative stress and proliferation of pulmonary vascular endothelial cells caused by hypoxia are the major mechanisms involved in the pathophysiology of PH. It has been reported in recent years that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes angiogenesis. In this study, normal human pulmonary microvascular endothelial cells (HPMVECs) and HPMVECs with stable knockout of CEACAM1 by CRISPR-Cas9 were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to induce hypoxic conditions. JC-1, ROS, and cell cycle profile were analyzed for each cell line and controls, using flow cytometry. A tube formation assay was used to detect angiogenesis, along with expression levels of CEACAM1, TNF-α, VEGF, VEGFR-2, p-P38/P38, and CyclinD1 proteins (to distinguish profiles of angiogenic growth and cell proliferation). We observed increased expression of CEACAM1 in HPMVECs after OGD/R, while ROS production was reduced and mitochondrial membrane potential was increased after OGD/R in CEACAM1-/- HPMVECs. Furthermore, we observed increased cell division in CEACAM-/- HPMVECs, accompanied by enhanced angiogenesis and reduced TNF-α protein expression and increased VEGF, VEGFR-2, and CyclinD1 expression. Together, these data suggest that upregulation of CEACAM1 in HPMVECs under hypoxic conditions may damage cells by increasing oxidative stress and inhibiting cell proliferation.

Funder

Yunnan Provincial High-level Health Technical Reserve Talents Support Program

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3