Automatic Tissue Image Segmentation Based on Image Processing and Deep Learning

Author:

Kong Zhenglun1ORCID,Li Ting2ORCID,Luo Junyi3,Xu Shengpu2ORCID

Affiliation:

1. Northeastern University, Boston, MA, USA

2. Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union, Tianjin 300192, China

3. University of Electronic Science and Technology of China, Chengdu, China

Abstract

Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies, or other novel imaging technologies. In addition, image segmentation also provides detailed structural description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation methods. Here, we first use some preprocessing methods such as wavelet denoising to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM), and white matter (WM) on 5 MRI head image datasets. We then realize automatic image segmentation with deep learning by using convolutional neural network. We also introduce parallel computing. Such approaches greatly reduced the processing time compared to manual and semiautomatic segmentation and are of great importance in improving the speed and accuracy as more and more samples are being learned. The segmented data of grey and white matter are counted by computer in volume, which indicates the potential of this segmentation technology in diagnosing cerebral atrophy quantitatively. We demonstrate the great potential of such image processing and deep learning-combined automatic tissue image segmentation in neurology medicine.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3