Facile Synthesis and Electrochemical Analysis of Zn-Doped V2O5 Anode Materials for High-Rate Li Storage

Author:

Jang Yong-Jin1,Seo Hyungeun1ORCID,Kim Jae-Hun1ORCID

Affiliation:

1. School of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea

Abstract

The surging demand for Li rechargeable batteries with high energy densities and rapid rate capability has propelled research on materials that can replace the conventional anode materials like graphite. Vanadium pentoxides (V2O5) have emerged as promising anode candidates owing to their excellent rate capability. Specifically, V2O5 allows the electrochemical prelithiation process, in which three Li-ions can be inserted to form Li3V2O5, followed by reversible insertion and extraction of two Li-ions. Nevertheless, the unsatisfactory Li-ion diffusion coefficients and electrical conductivities of these materials remain major drawbacks. Here, we propose a Zn-doped V2O5 anode, fabricated using a two-step sol–gel method, for high-rate Li-ion batteries. Zn was incorporated into V2O5 to enhance the Li-ion transport kinetics through the electrode. The crystal structure (orthorhombic) of Zn-doped V2O5 was identified by X-ray diffraction analysis, and the Zn doping was confirmed by X-ray photoelectron microscopy. The effect of Zn doping was thoroughly examined using various analytical methods, such as cyclic voltammetry and galvanostatic intermittent titration technique. The Zn-doped V2O5 electrode exhibited remarkable cycling durability, enduring for 1000 cycles, while retaining an enhanced capacity, even under a high rate of 2C.

Funder

Korean Government

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3