Simulation of Sports Venue Based on Ant Colony Algorithm and Artificial Intelligence

Author:

Zhang Rui1ORCID,Sun Weibo2ORCID,Tsai Sang-Bing3ORCID

Affiliation:

1. Department of Physical Education and Research, Heilongjiang Bayi Agricultural University, Heilongjiang 163319, China

2. Institute of Physical Education, Jiamusi University, Heilongjiang 154000, China

3. Regional Green Economy Development Research Center, School of Business, WUYI University, China

Abstract

In order to improve the congestion of the evacuation plan and further improve the evacuation efficiency, this paper proposes the priority Pareto partial order relation and the vector pheromone routing method based on the priority Pareto partial order relation. Numerical experiments show that compared with the hierarchical multiobjective evacuation path optimization algorithm based on the hierarchical network, the fragmented multiobjective evacuation path optimization algorithm proposed in this paper effectively improves the evacuation efficiency of the evacuation plan and the convergence of the noninferior plan set. However, the congestion condition of the noninferior evacuation plan obtained by the fragmented multiobjective evacuation route optimization algorithm is worse than the congestion condition of the noninferior evacuation plan obtained by the hierarchical multiobjective evacuation route optimization algorithm. The multiple factors that affect the routing process considered in the probability transfer function used in the traditional ant colony algorithm routing method must be independent of each other. However, in actual route selection, multiple factors that affect route selection are not necessarily independent of each other. In order to fully consider the various factors that affect the routing, this paper adopts the vector pheromone routing method based on the traditional Pareto partial order relationship instead of the traditional ant colony algorithm. The model mainly improves the original pheromone distribution and volatilization coefficient of the ant colony, speeds up the convergence speed and accuracy of the algorithm, and obtains ideal candidate solutions. The method is applied to the location of sports facilities and has achieved good results. The experimental results show that the improved ant colony algorithm model designed in this paper is suitable for solving the problem of urban sports facilities location in large-scale space.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3