Unsupervised SAR Image Segmentation Based on a Hierarchical TMF Model in the Discrete Wavelet Domain for Sea Area Detection

Author:

Wang Jiajing12ORCID,Jiao Shuhong1,Shen Lianyang3ORCID,Sun Zhenyu4ORCID,Tang Lin1

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. No. 92677 Unit of PLA, Dalian 116001, China

3. Naval Armaments Department Military Representative Office, Shenyang 110000, China

4. No. 91550 Unit of PLA, Dalian 116001, China

Abstract

Unsupervised synthetic aperture radar (SAR) image segmentation is a fundamental preliminary processing step required for sea area detection in military applications. The purpose of this step is to classify large image areas into different segments to assist with identification of the sea area and the ship target within the image. The recently proposed triplet Markov field (TMF) model has been successfully used for segmentation of nonstationary SAR images. This letter presents a hierarchical TMF model in the discrete wavelet domain of unsupervised SAR image segmentation for sea area detection, which we have named the wavelet hierarchical TMF (WHTMF) model. The WHTMF model can precisely capture the global and local image characteristics in the two-pass computation of posterior distribution. The multiscale likelihood and the multiscale energy function are constructed to capture the intrascale and intrascale dependencies in a random field (X,U). To model the SAR data related to radar backscattering sources, the Gaussian distribution is utilized. The effectiveness of the proposed model for SAR image segmentation is evaluated using synthesized and real SAR data.

Funder

National Natural Science Fund Project of Youths Science Fund

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3