Molybdate treatment and sulfate starvation decrease ATP and DNA levels inFerroplasma acidarmanus

Author:

Baumler David J.1,Hung Kai-Foong2,Jeong Kwang Cheol2,Kaspar Charles W.12

Affiliation:

1. Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, USA

2. Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA

Abstract

Sulfate is a primary source of sulfur for most microbes and in some prokaryotes it is used an electron acceptor. The acidophileFerroplasma acidarmanus(strain fer1) requires a minimum of 150 mM of a sulfate-containing salt for growth. Sulfate is assimilated byF. acidarmanusinto proteins and reduced to form the volatile organic sulfur compounds methanethiol and dimethyldisulfide. In the absence of sulfate, cell death occurs by an unknown mechanism. In this study, cell viability and genomic DNA and ATP contents ofF. acidarmanuswere monitored in response to the absence of sulfate or the presence of sulfate and the sulfate analog molybdate (MoO42-). Cellular DNA and ATP contents were monitored as markers of cell viability. The absence of sulfate led to a decrease in viable cell numbers of greater than 7 log10within 5 days, a > 99% reduction in genomic DNA within 3 days, and a > 60% decrease in ATP within 6 h. Likewise, cells incubated with lost viability (decreased by > 2 log10in 5 days), extractable genomic DNA (reduction of > 60% in 2 days), and ATP (reduction of > 70 % in 2 hours). These results demonstrate that sulfate deprivation or the presence of molybdate have similar impacts on cell viability and essential biomolecules. Sulfate was coupled to cellular ATP content and maintenance of DNA integrity inF. acidarmanus, a finding that may be applicable to other acidophiles that are typically found in sulfate-rich biotopes.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Ecology, Evolution, Behavior and Systematics,Physiology,Microbiology

Reference19 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3