Building Application-Related Patient Identifiers: What Solution for a European Country?

Author:

Quantin Catherine1,Allaert François-André2,Avillach Paul34,Fassa Maniane1,Riandey Benoît5,Trouessin Gilles6,Cohen Olivier7

Affiliation:

1. Service de Biostatistique et Informatique Médicale, CHU de Dijon, INSERM EMI 0106, 21079 Dijon Cedex, France

2. Department of Epidemiology and Biostatistics, Mc Gill University, Montreal, QC, Canada H3G 1Y6

3. Laboratoire d'Epidémiologie, Statistique et Informatique Médicales (LESIM), Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France

4. Laboratoire d'Enseignement et de Recherche sur le Traitement de l'Information Médicale, Faculté de Médecine, Université de la Méditerranée Marseille, 13284 Marseille Cedex 07, France

5. Institut National d'Etudes Démographiques (INED), 133 Boulevard Davout 75980 Paris Cedex 20, France

6. OPPIDA Sud, Batiment F 78 allée Jean Jaurès, 31000 Toulouse, France

7. HC Forum, Les Jardins de Maupertuis, 7 Chemin de la Dhuy, 38240 Meylan, France

Abstract

We propose a method utilizing a derived social security number with the same reliability as the social security number. We show the anonymity techniques classically based on unidirectional hash functions (such as the secure hash algorithm (SHA-2) function that can guarantee the security, quality, and reliability of information if these techniques are applied to the Social Security Number). Hashing produces a strictly anonymous code that is always the same for a given individual, and thus enables patient data to be linked. Different solutions are developed and proposed in this article. Hashing the social security number will make it possible to link the information in the personal medical file to other national health information sources with the aim of completing or validating the personal medical record or conducting epidemiological and clinical research. This data linkage would meet the anonymous data requirements of the European directive on data protection.

Publisher

Hindawi Limited

Subject

Health Information Management,Computer Networks and Communications,Health Informatics,Medicine (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3