Affiliation:
1. Department of Biology, Winona State University, 234 Pasteur Hall, P.O. Box 5838, Winona, MN 55987, USA
2. Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6-452 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
Abstract
Glucocorticoids are commonly used in the first-line treatment of hematological malignancies, such as acute lymphoblastic leukemia, due to the ability of these steroids to activate pro-apoptotic pathways in human lymphocytes. The goal of the current study was to examine the gene expression and enzyme activity of the microsomal enzyme, 11-β hydroxysteroid dehydrogenase type 2 (HSD11B2, HSD2), which is responsible for the oxidation of bioactive glucocorticoids to their inert metabolites. Using the glucocorticoid-sensitive human leukemic cell line, CEM-C7, we were able to detect the expression of HSD2 at the level of mRNA (via RT-PCR), protein (via immunohistochemistry and immunoblotting), and enzyme activity (via conversion of tritiated cortisol to cortisone). Furthermore, we observed that HSD2 enzyme activity is down regulated in CEM-C7 cells that were pretreated with the synthetic glucocorticoid, dexamethasone (100 nM, <15 hours), and that this down regulation of enzyme activity is blocked by the administration of the glucocorticoid receptor antagonist, RU-486. Taken collectively, these data raise the possibility that the effectiveness of glucocorticoids in the treatment of human leukemias may be influenced by: (1) the ability of these neoplastic cells to metabolize glucocorticoids via HSD2 and (2) the ability of these steroids to regulate the expression of this key enzyme.
Subject
Pulmonary and Respiratory Medicine,Pediatrics, Perinatology, and Child Health
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献