Adsorption Equilibrium for Heavy Metal Divalent Ions (Cu2+, Zn2+, and Cd2+) into Zirconium-Based Ferromagnetic Sorbent

Author:

Lee Agnes Yung Weng1,Lim Soh Fong1ORCID,Chua S. N. David1,Sanaullah Khairuddin1,Baini Rubiyah1ORCID,Abdullah Mohammad Omar1

Affiliation:

1. Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia

Abstract

Zirconium-based ferromagnetic sorbent was fabricated by coprecipitation of Fe2+/Fe3+ salts in a zirconium solution and explored as a potential sorbent for removing the Cu2+, Zn2+, and Cd2+ from aqueous solution. The sorbent could easily be separated from aqueous solution under the influence of external magnetic field due to the ferromagnetism property. A trimodal distribution was obtained for the sorbent with average particle size of 22.74 μm. The –OH functional groups played an important role for efficient removal of divalent ions. The surface of the sorbent was rough with abundant protuberance while the existence of divalent ions on the sorbent surface after the sorption process was demonstrated. Decontamination of the heavy metal ions was studied as a function of initial metal ions concentration and solution pH. Uptake of the heavy metal ions showed a pH-dependent profile with maximum sorption at around pH 5. The presence of the ferromagnetic sorbent in solution at different initial pH has shown a buffering effect. Equilibrium isotherms were analyzed using Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Adequacy of fit for the isotherm models based on evaluation of R2 and ARE has revealed that heavy metal ions decontamination was fitted well with the Freundlich model.

Funder

Universiti Malaysia Sarawak

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3