Analyzing the Mechanical, Durability, and Microstructural Impact of Partial Cement Replacement with Pumice Powder and Bamboo Leaf Ash in Concrete

Author:

Adem Haris Hassen1,Cherkos Fikreyesus Demeke1ORCID

Affiliation:

1. Department of Civil Engineering, Adama Science and Technology University, Adama 1888, Ethiopia

Abstract

This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO2, Al2O3, and Fe2O3 in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.

Publisher

Hindawi Limited

Reference77 articles.

1. Rebuilding Construction (Routledge Revivals): Economic Change in the British Construction Industry;M. Ball,2014

2. Transparent concrete by using optical fibre;C. Palanisamy;Materials Today: Proceedings,2022

3. Experimental investigation on self-compacting concrete with waste marble and granite as fine aggregate;C. Palanisamy;Materials Today: Proceedings,2022

4. Extrusion-Based Additive Manufacturing of Concrete Products: Revolutionizing and Remodeling the Construction Industry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3