Affiliation:
1. Computational Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
Abstract
Candida antarcticalipase B (CALB) is a known stable and highly active enzyme used widely in biodiesel synthesis. In this work, the stability of native (4K6G) and mutant (4K5Q) CALB was studied through various structural parameters using conformational sampling approach. The contours of polar surface area and surface area of mutant CALB were 11357.67 Å2and 30007.4 Å2, respectively, showing an enhanced stability compared to native CALB with a statistically significantPvalue of < 0.0001. Moreover, simulated thermal denaturation of CALB, a process involving dilution of hydrogen bond, significantly shielded against different intervals of energy application in mutant CALB revealing its augmentation of structural rigidity against native CALB. Finally, computational docking analysis showed an increase in the binding affinity of CALB and its substrate (triglyceride) in mutant CALB with Atomic Contact Energy (ACE) of −91.23 kcal/mol compared to native CALB (ACE of −70.3 kcal/mol). The computational observations proposed that the use of mutant CALB (4K5Q) could serve as a best template for production of biodiesel in the future. Additionally, it can also be used as a template to identify efficient thermostable lipases through further mutations.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献