Affiliation:
1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
2. Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract
Reliability of motorized spindles has a great effect on the performance and productivity of computer numerical control (CNC) machine tools for intelligent manufacturing. Condition-based maintenance (CBM) is an efficient method to prevent serious failures, to improve system reliability, and to reduce management costs for motorized spindles. However, owing to various degradation features acquired during condition monitoring, the challenge is to propose an appropriate feature to evaluate the reliability level of motorized spindles and to set up optimal CBM policies. Based on the motivation, a three-stage approach is proposed in this paper. In the first stage, proportional hazard model (PHM) is developed to describe the reliability considering failure events together with multiple degradation features. Next, statistical process control (SPC) charts are constructed for condition monitoring and anomaly detection in order to achieve early detection of potential failures. At last, a CBM schedule is modeled in consideration of maintenance cost minimization; the maintenance plan is optimized by determining the optimal control limits of SPC charts.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献