Grain Growth of AZ31 Magnesium Alloy Based on Three-Dimensional Cellular Automata

Author:

Li Yanfeng1,Liu Cuirong1ORCID,Chu Zhibing1,Li Wei1,Wu Zhisheng1,Gao Shan1,He Wenwu1

Affiliation:

1. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China

Abstract

Based on the thermodynamic conversion mechanism and energy transition principle, a three-dimensional cellular automata model of grain growth is established from the aspects of grain orientation, grain size distribution, grain growth kinetics, and grain topology. Also, the effect of temperature on the three-dimensional grain growth process of AZ31 magnesium alloy is analyzed. The results show that the normal growth of three-dimensional grains satisfies the Aboav-weaire equation, the average number of grain planes is between 12 and 14 at 420°C and 2000 CAS, and the maximum number of grain planes is more than 40. Grains of different sizes are distributed normally at different times, most of which are grains with the ratio of grain diameter to average grain diameter R/Rm ≈ 1.0, which meets the minimum energy criterion of grain evolution. The grain of AZ31 magnesium alloy increases in size with the increase of temperature, and the number of grains decreases with the increase in time. The angle between the two-dimensional slices of three-dimensional grains is approximately 120°, which is consistent with that of the traditional two-dimensional cellular automata. The relative error of grain size before and after heat preservation is in the range of 0.1–0.6 μm, which indicates that the 3D cellular automata can accurately simulate the heat preservation process of AZ31 magnesium alloy.

Funder

National Key Research and Development Plan of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3