Existence of Multiple Periodic Solutions for Cubic Nonautonomous Differential Equation

Author:

Akram Saima1ORCID,Nawaz Allah1,Kalsoom Humaira2ORCID,Idrees Muhammad3,Chu Yu-Ming45ORCID

Affiliation:

1. Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60000, Pakistan

2. School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

3. Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China

4. Department of Mathematics, Huzhou University, Huzhou 313000, China

5. Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China

Abstract

In this article, approaches to estimate the number of periodic solutions of ordinary differential equation are considered. Conditions that allow determination of periodic solutions are discussed. We investigated focal values for first-order differential nonautonomous equation by using the method of bifurcation analysis of periodic solutions from a fine focus Z=0. Keeping in focus the second part of Hilbert’s sixteenth problem particularly, we are interested in detecting the maximum number of periodic solution into which a given solution can bifurcate under perturbation of the coefficients. For some classes like C7,7,C8,5,C8,6,C8,7, eight periodic multiplicities have been observed. The new formulas ξ10 and ϰ10 are constructed. We used our new formulas to find the maximum multiplicity for class C9,2. We have succeeded to determine the maximum multiplicity ten for class C9,2 which is the highest known multiplicity among the available literature to date. Another challenge is to check the applicability of the methods discussed which is achieved by presenting some examples. Overall, the results discussed are new, authentic, and novel in its domain of research.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3