Effect of Blade Outlet Angle on Radial Force of Marine Magnetic Drive Pump

Author:

Zhang Hong-li1ORCID,Kong Fan-yu1,Zhu Ai-xia2,Zhao Fei13,Xu Zhen-fa1

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China

2. Totecber (Hangzhou) Technology Co. Ltd., Hangzhou 310000, China

3. School of Mechanical Technology, Wuxi Institute of Technology, Wuxi 214121, China

Abstract

To research the effects of the blade outlet angle on the performance and the radial force of the marine pump, the unsteady numerical simulation of the four different models is carried out. The radial forces on the impeller and the blades are obtained under different flow rate conditions. The time and frequency domain characteristics of radial resultant force on the impeller and the blades are analyzed and those of the impeller torque are researched. The results show that the radial forces of the impeller and the blades increase with the increase of the blade outlet angle at the same flow rate. With the same blade outlet angle, the radial forces decrease with the increase of the flow rate. The roundness of radial force vector diagram becomes more obvious with the decrease of the blade outlet angle. The root mean square (RMS) of radial force on the blades is about 30% of that on the impeller. The main frequency of radial force on the impeller and the blades is the axial passing frequency (APF), and that of impeller torque is the blade passing frequency (BPF), and there are peaks at the blade frequency multiplier. At the same flow rate, the main frequency and maximum fluctuation amplitudes on the impeller and the blades increase with the increase of the blade outlet angle. Meanwhile, the impeller torque increases with the increase of the blade outlet angle. With the same blade outlet angle, the main frequency, maximum fluctuation amplitudes, and the impeller torque decrease with the increase of the flow rate. The amplitude difference decreases with the increase of the flow rate. The blade outlet angle has an obvious greater influence on the radial forces and fluctuation at the small flow rate. The vibration test shows that the vibration intensities of model 25 and model 35 are less than 2.5 mm/s, and the vibration intensity of model 25 is about 0.2 mm/s less than that of model 35.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3