Scalable THz Network-On-Chip Architecture for Multichip Systems

Author:

Tahanian Esmaeel1ORCID,Tajary Alireza1,Rezvani Mohsen1ORCID,Fateh Mansoor1

Affiliation:

1. Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

While THz wireless network-on-chip (WiNoC) introduces considerably high bandwidth, due to the high path loss, it cannot be used for communication between far apart nodes, especially in a multichip architecture. In this paper, we introduce a cellular and scalable architecture to reuse the frequencies of the chips. Moreover, we use a novel structure called parallel-plate waveguide (PPW) that is suitable for interchip communication. The low-loss property of this waveguide lets us increase the number of chips. Each chip has a wireless node as a gateway for communicating with other chips. To shorten the length of intra- and interchip THz links, the optimum configuration is determined by leveraging the multiobjective simulating annealing (SA) algorithm. Finally, we compare the performance of the proposed THz multichip NoC with a conventional millimeter-wave one. Our simulation results indicate that when the system scales up from four to sixteen chips, the throughput of our design is decreased about 5.8 % , while for millimeter-wave NoC, this reduction is about 21 % . Furthermore, the average latency growth of our system is only 1 % compared with about 40 % increase for the millimeter-wave NoC.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3