Bubble Bursting and Drainage Characteristics at the Free Surface of a Liquid Pool with an Aerosol

Author:

Yu Xiang1ORCID,Gu Haifeng1ORCID,Yin Weikai1ORCID,Sun Qingyang1ORCID

Affiliation:

1. Heilongjiang Provincial Key Laboratory of Nuclear Power System & Equipment, Harbin 150001, China

Abstract

When nuclear reactor accidents such as steam generator pipe ruptures or core melting occur, radioactive aerosols will remain in the liquid pools. Bubbles may be generated by boiling or gas injection. Film droplets produced by bubble bursts may entrain radioactive aerosols from the liquid to the air. This long-lasting behavior can produce a considerable amount of aerosols. To evaluate radioactive source terms, many physical quantities related to bubble bursting need to be determined, such as bubble burst position, bubble lifetime, cap film roll-up velocity, and cap film thickness, which are very important parameters that influence the releasing of radioactive aerosols. In this research, the phenomenon of bubble bursting was investigated by visualization. The above parameters were measured. We obtained the lifetime distribution of bubbles under different conditions, and we found that the addition of an aerosol increased the lifetime of the bubbles. By comparing the bubble lifetime to the roll-up velocity and cap thickness, we showed that the increase of the liquid temperature thickened the cap at rupture and the increase of the air temperature thinned the cap. The addition of an aerosol increased the film roll-up velocity.

Funder

Central University Basic Scientific Research Business Expenses Special Funds

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3