Galloping Stability and Aerodynamic Characteristic of Iced Transmission Line Based on 3-DOF

Author:

Liu Xiaohui1ORCID,Zou Ming2ORCID,Wu Chuan3,Yan Bo4ORCID,Cai Mengqi5ORCID

Affiliation:

1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China

4. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China

5. College of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

Abstract

A new calculation method of critical wind speed based on three degrees of freedom (3-DOF) is proposed for galloping problem of iced transmission line. Based on the quasistatic theory, the aerodynamic load of iced transmission line is obtained, which considers the influence of transverse and torsional motion on the relative wind angle of attack. Finally, the equivalent galloping model of 3-DOF iced transmission line is established. At the initial angle of attack, the aerodynamic load is expanded by Taylor, and the unsymmetrical linear aerodynamic coefficient matrix is obtained. The Routh–Hurwitz criterion is used to judge the stability of iced transmission line system, and then the critical wind speed is calculated. The in-plane and out-plane frequencies corresponding to the first-order mode of the transmission line are solved by the analytical method and numerical simulation method. The results obtained by the two methods are compared and verified. The influence of dimensionless transmission line parameterλon the in-plane and out-of-plane frequencies is discussed. The aerodynamic coefficients of the iced transmission line are measured by wind tunnel test and the aerodynamic characteristics are analyzed. According to the theoretical formula, the critical wind speed is calculated by MATLAB. The critical wind speed determined in this paper is compared with the critical wind speed determined by Den Hartog and Nigol theory. The influences of torsional vibration frequency, ice thickness, and ice shape on critical wind speed are analyzed. The research results of this paper have important theoretical significance for the stability judgment of iced transmission lines.

Funder

National Inherent Science Foundation of China and Science

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3