Analysis of the Anomalous Signals near the Tropopause before the Overshooting Convective System Onset over the Tibetan Plateau

Author:

Tian Hongying1ORCID,Xu Xiran1,Chen Hongbao2,Huang Rui1,Zhang Shiyan1,Luo Jiali1

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

2. Water Resources and Hydropower Investigation, Design and Research Institute Co., Ltd., Gansu, Lanzhou 730000, China

Abstract

This study investigates the anomalous signals near the tropopause before the overshooting convective system (OCS) onset over the Tibetan Plateau (TP). It is found that the tropopause height is stable at the maximum height for the 7th day and the 5th day before the OCS onset. It then decreases significantly one day before and on the day of the OCS onset. The upward motion in the troposphere is the strongest for the 5th day before the OCS onset. From one day before and after the OCS onset, there are strong ascending motions at 500–300 hPa but weak descending motions near the tropopause. It is proposed that the descending of the tropopause height on the day of the OCS onset is caused by frequent tropopause fold events over the eastern TP associated with frequent cold trough intrusion from the north and the southeastward movement of upper-level westerly jet stream. The decrease of the tropopause height is accompanied by the intrusion of stratospheric air with higher potential vorticity (PV). Positive potential vorticity anomalies on 350 K isentropic surface can be noted in the region where the tropopause height decreases one day before and on the day of the OCS onset. With the deepening of the tropopause fold on the day of the OCS onset, there is not only downward motion near the tropopause in the area behind of the fold but also upward motion in the troposphere beneath the folding region. In addition, the upward displacement of isentropic surfaces leads to an upper-level cold pool, which causes a reduction in static stability beneath the PV anomaly on the day of the OCS onset. The upper-level PV anomalies and their associated strong instability in the middle troposphere can trigger convective activities by the release of potential instability on the day of the OCS onset. The overshooting convection is more likely to occur due to lower tropopause height, although upward motion in the troposphere is not the strongest.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3