An Improved Particle Swarm Optimization Algorithm forOptimal Allocation of Distributed Generation Units in Radial Power Systems

Author:

Hantash Neda1,Khatib Tamer2ORCID,Khammash Maher3

Affiliation:

1. Faculty of Graduate Studies, An-Najah National University, 97300 Nablus, State of Palestine

2. Department of Energy Engineering and Environment, An-Najah National University, 97300 Nablus, State of Palestine

3. Department of Electrical Engineering, An-Najah National University, 97300 Nablus, State of Palestine

Abstract

In this paper, an improved particle swarm optimization method (PSO) is proposed to optimally size and place a DG unit in an electrical power system so as to improve voltage profile and reduce active power losses in the system. An IEEE 34 distribution bus system is used as a case study for this research. A new equation of weight inertia is proposed so as to improve the performance of the PSO conventional algorithm. This development is done by controlling the inertia weight which affects the updating velocity of particles in the algorithm. Matlab codes are developed for the adapted electrical power system and the improved PSO algorithm. Results show that the proposed PSO algorithm successfully finds the optimal size and location of the desired DG unit with a capacity of 1.6722 MW at bus number 10. This makes the voltage magnitude of the selected bus equal to 1.0055 pu and improves the status of the electrical power system in general. The minimum value of fitness losses using the applied algorithm is found to be 0.0.0406 while the average elapsed time is 62.2325 s. In addition to that, the proposed PSO algorithm reduces the active power losses by 31.6%. This means that the average elapsed time is reduced by 21% by using the proposed PSO algorithm as compared to the conventional PSO algorithm that is based on the liner inertia weight equation.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3