Preprocessing Method for Encrypted Traffic Based on Semisupervised Clustering

Author:

Zheng Rongfeng1,Liu Jiayong2ORCID,Niu Weina3,Liu Liang2,Li Kai2,Liao Shan2

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

2. College of Cybersecurity, Sichuan University, Chengdu 610065, China

3. School of Computer Science and Engineering, Institute for Cyber Security, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China

Abstract

The explosive growth in network traffic in recent times has resulted in increased processing pressure on network intrusion detection systems. In addition, there is a lack of reliable methods for preprocessing network traffic generated by benign applications that do not steal users’ data from their devices. To alleviate these problems, this study analyzed the differences between benign and malicious traffic produced by benign applications and malware, respectively. To fully express these differences, this study proposed a new set of statistical features for training a clustering model. Furthermore, to mine the communication channels generated by benign applications in batches, a semisupervised clustering method was adopted. Using a small number of labeled samples, our method aggregated historical network traffic into two types of clusters. The cluster that did not contain labeled malicious samples was regarded as a benign traffic cluster. The experimental results were compared using four types of clustering algorithms. The density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm was selected to mine benign communication channels. We also compared our method with two other methods, and the results demonstrated that the benign channels mined through our method were more reliable. Finally, using our method, 1,811 benign transport layer security (TLS) channels were mined from 18,357 TLS communication channels. The number of flows carried by these benign channels comprised 65.37% of the entire network flows, and no malicious flow was included in our results, which proves the effectiveness of our method.

Funder

National Defense Innovation Special Zone Program of Science and Technology

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3