Hydrogeochemical Evolution and Control Mechanism of Underground Multiaquifer System in Coal Mine Area

Author:

Ju Qiding12ORCID,Liu Yu1ORCID,Hu Youbiao2,Wang Yuquan3,Liu Qimeng2,Wang Zitao2

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

2. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

3. Wanbei Coal-electricity Group Company, Suzhou 234001, China

Abstract

Mining activities interfere into the natural groundwater chemical environment, which may lead to hydrogeochemical changes of aquifers and mine water inrush disasters. The study of hydrogeochemical evolution processes of underground aquifers is helpful to the prevention and control of mine water inrush. The results show that the study area is mainly impacted by four hydrogeochemical processes: dissolution, cation exchange, desulfurization and reduction, and pyrite oxidation. The Cenozoic aquifers are dominated by carbonate dissolution and desulfurization. The Permian aquifers are impacted mainly by cation exchange and sulfate dissolution, followed by pyrite oxidation. The Carboniferous aquifers are mainly impacted by dissolving sulfate, followed by pyrite oxidation and cation exchange. The hydrogeochemical evolution of the aquifers was controlled by mining activities and tectonic changes, and a certain regularity in space. For the Cenozoic aquifers, sulfate dissolution and cation exchange increase from west to east, and desulfurization weakens. For the Permian aquifers, cation exchange and sulfate dissolution are stronger near synclines and faults, pyrite oxidation is enhanced, and desulfurization decreases from the middle to the east of the mining area. For the Carboniferous aquifers, there is a higher dissolution of rock salt, pyrite oxidation, and cation exchange from west to east, and the desulfurization effect weakens.

Funder

Anhui University of Science and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3