Demand Response Management Research Based on Cognitive Radio for Smart Grid

Author:

Yang Tingting1ORCID,Huang Tiancong1ORCID,Zhang Haifeng2ORCID,Li Peiyi1ORCID,Xiong Canyun1ORCID,Wu Yucheng1ORCID

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China

2. Beijing Smartchip Microelectronics Technology Company Limited, Beijing, China

Abstract

Cognitive radio is introduced into the demand response management (DRM) of smart grid with the hope of alleviating the shortage of spectrum resources and improving communication quality. In this paper, we adopt an energy detection algorithm based on generalized stochastic resonance (GSRED) to improve the spectrum sensing accuracy under the circumstances of low signal-to-noise ratio without increasing system overhead. Specifically, a DRM scheme based on real-time pricing is investigated, and the social welfare is taken as the main index to measure system control performance. Furthermore, considering the adverse effects incurred by incorrect spectrum sensing, we incorporate the probability of the DRM system causing interference to primary user and spectrum loss rate into the evaluation index of the system control performance and give the final expression of the global optimization problem. The influence of sensing time on system communication outage probability and spectrum loss rate is elaborated in detail through theoretical derivation and simulation analysis. Simulation results show that the GSRED algorithm has higher detection probability under the same conditions compared with the traditional energy detection algorithm, thus guaranteeing lower communication outage probability and spectrum loss rate.

Funder

Core Electronic Devices, High-end General Chips and Basic Software Products Projects of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3