Stability and Countermeasures for a Deposit Slope with Artificial Scarp: Numerical Analysis and Field Monitoring

Author:

Hong Yong1,Shao Zhushan1ORCID,Shi Guangbin1,Liu Jiabao2

Affiliation:

1. Xi’an University of Architecture and Technology, Xi’an 710055, China

2. The1st Engineering Co., Ltd. of China Railway 12th Bureau Group, Xi’an 710038, China

Abstract

This paper presents the results of the stability analysis of a deposit slope with an artificial scarp in a tunnel exit and an evaluation of the effectiveness of four proposed reinforcement schemes. A typical slope section was used to study the deposit slope stability and retaining mechanisms of the reinforcement systems. A series of two-dimensional (2D) finite element models (FEM), combined with a strength reduction technique, was established using the Phase2 software. According to field monitoring results, the horizontal displacements of the front, middle, and rear of the slope decreased gradually, and the safety factor increased successively. The front of the deposit slope was in a state of limit equilibrium as a result of the artificial scarp formed by long-term manual excavation. Anchors and concrete frame beams provided stress compensation and improve the stability of the deposit slope, and front prestressed anchor cables and stability piles strengthened the mechanical properties of the rock and soil masses and provided resistance at the front of the deposit. Rear stability piles prevented the front of the deposit from being pushed and the middle and rear of the deposit from being pulled and provided resistance at the front of the deposit. The field monitoring also showed that the deformation of the deposit slope was effectively controlled. The study results provide insights into the effectiveness of measures for reinforcing and maintaining the stability of deposit slope with artificial scarps.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference37 articles.

1. Slope stabilization in difficult conditions: the case study of a debris slide in NW Italian Alps

2. A critical review on the performance of yielding supports in squeezing tunnels;K. Wu;Tunnelling and Underground Space Technology,2021

3. Visco-Elastic Analysis on the Effect of Flexible Layer on Mechanical Behavior of Tunnels

4. Roles of key factors on large anisotropic deformations at deep underground excavations;B. Hu;International Journal of Mining Science and Technology,2021

5. An analytical design method for ductile support structures in squeezing tunnels

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3