Human Falling Detection Algorithm Based on Multisensor Data Fusion with SVM

Author:

Pan Daohua12ORCID,Liu Hongwei1ORCID,Qu Dongming3,Zhang Zhan1

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China

2. Department of Electronic and Information Engineering, Heilongjiang Vocational College for Nationalities, Harbin 150066, Heilongjiang, China

3. Department of Financial Technology, China Construction Bank, Harbin 150001, Heilongjiang, China

Abstract

Falling is a common phenomenon in the life of the elderly, and it is also one of the 10 main causes of serious health injuries and death of the elderly. In order to prevent falling of the elderly, a real-time fall prediction system is installed on the wearable intelligent device, which can timely trigger the alarm and reduce the accidental injury caused by falls. At present, most algorithms based on single-sensor data cannot accurately describe the fall state, while the fall detection algorithm based on multisensor data integration can improve the sensitivity and specificity of prediction. In this study, we design a fall detection system based on multisensor data fusion and analyze the four stages of falls using the data of 100 volunteers simulating falls and daily activities. In this paper, data fusion method is used to extract three characteristic parameters representing human body acceleration and posture change, and the effectiveness of the multisensor data fusion algorithm is verified. The sensitivity is 96.67%, and the specificity is 97%. It is found that the recognition rate is the highest when the training set contains the largest number of samples in the training set. Therefore, after training the model based on a large amount of effective data, its recognition ability can be improved, and the prevention of fall possibility will gradually increase. In order to compare the applicability of random forest and support vector machine (SVM) in the development of wearable intelligent devices, two fall posture recognition models were established, respectively, and the training time and recognition time of the models are compared. The results show that SVM is more suitable for the development of wearable intelligent devices.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3