Evaluation of the Effect of Environmental Parameters on the Spread of COVID-19: A Fuzzy Logic Approach

Author:

Chowdhury Mohammad Asaduzzaman1ORCID,Shah Quazi Zobaer1,Kashem Mohammod Abul2,Shahid Abdus3,Akhtar Nasim2

Affiliation:

1. Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1707, Bangladesh

2. Department of Computer Science and Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1707, Bangladesh

3. Department of Textile Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1707, Bangladesh

Abstract

In recent months, the world has experienced the outbreak and spread of a new infectious disease, COVID-19. The spread of this disease has been so severe, and even many developed countries have struggled to manage this situation. However, some countries, such as China and Australia, have shown success in taking effective steps towards tackling the crisis. So far, some preventive measures to contain the spread of infection have emerged. Numerous studies have been undertaken worldwide in parallel in order to develop strategies to contain the virus, as well as to determine climatic or atmospheric conditions favoring COVID-19 spread. In this research, an artificial intelligence (AI) system has been adopted to assess the effective role of various environmental conditions in the spread of COVID-19. Temperature, relative humidity (RH), and UV index (UVI) of some affected countries were considered as input parameters while the total number of infected people is taken as the output variable. After plotting all available data as linguistic variables, a relationship is established between temperature, RH, UVI, and the number of infected people. From the surface graph, it can be stated that in addition to UVI, temperature and RH have a significant impact on the number of affected people. The maximum and minimum temperatures as well as other parameters are considered on the basis of mean values.

Publisher

Hindawi Limited

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3