Affiliation:
1. Information Security Evaluation Center, Civil Aviation University of China, Tianjin 300300, China
2. College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
3. College of Cyber Science, Nankai University, Tianjin 300350, China
Abstract
System logs can record the system status and important events during system operation in detail. Detecting anomalies in the system logs is a common method for modern large-scale distributed systems. Yet threshold-based classification models used for anomaly detection output only two values: normal or abnormal, which lacks probability of estimating whether the prediction results are correct. In this paper, a statistical learning algorithm Venn-Abers predictor is adopted to evaluate the confidence of prediction results in the field of system log anomaly detection. It is able to calculate the probability distribution of labels for a set of samples and provide a quality assessment of predictive labels to some extent. Two Venn-Abers predictors LR-VA and SVM-VA have been implemented based on Logistic Regression and Support Vector Machine, respectively. Then, the differences among different algorithms are considered so as to build a multimodel fusion algorithm by Stacking. And then a Venn-Abers predictor based on the Stacking algorithm called Stacking-VA is implemented. The performances of four types of algorithms (unimodel, Venn-Abers predictor based on unimodel, multimodel, and Venn-Abers predictor based on multimodel) are compared in terms of validity and accuracy. Experiments are carried out on a log dataset of the Hadoop Distributed File System (HDFS). For the comparative experiments on unimodels, the results show that the validities of LR-VA and SVM-VA are better than those of the two corresponding underlying models. Compared with the underlying model, the accuracy of the SVM-VA predictor is better than that of LR-VA predictor, and more significantly, the recall rate increases from 81% to 94%. In the case of experiments on multiple models, the algorithm based on Stacking multimodel fusion is significantly superior to the underlying classifier. The average accuracy of Stacking-VA is larger than 0.95, which is more stable than the prediction results of LR-VA and SVM-VA. Experimental results show that the Venn-Abers predictor is a flexible tool that can make accurate and valid probability predictions in the field of system log anomaly detection.
Funder
Tianjin Key Research and Development Plan
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献