Study on the Vibration Effect of Short Footage Blasting Load on Surrounding Rock-Support Structure of Tunnel

Author:

Dai Chunquan1ORCID,Sui Hongtao1,Ma Chao1

Affiliation:

1. School of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Abstract

In the excavation process of a drilling and blasting tunnel, it takes multiple blasting excavations to form, so it is inevitable to produce multiple blasting impact loads, which will cause certain vibration damage to the surrounding rock-support structure. To solve this problem, based on the attenuation formula of blasting vibration wave and considering the cumulative effect of short footage blasting load, the radial displacement formula of surrounding rock particles is derived, and the analytical solution of vibration velocity field is obtained by using the method of separating variables. Then, taking Cuobuling station of Qingdao Metro as the engineering background, the finite element software is used to simulate the tunnel excavation process under the action of short footage multiple blasting. The vibration damage impact of multiple blasting loads on the surrounding rock-supporting structure is analyzed from the accumulated displacement value and vibration velocity cumulative value of the excavation tunnel. The results show that the damage accumulation effect is produced in the surrounding rock of each section during the blasting construction, among which the accumulation is the largest at the arch bottom. With the increase of blasting times, the damage of the surrounding rock is still accumulating gradually. Compared with the first blasting, the peak value of vibration velocity of the second blasting increased by 114%, and with the increase of blasting times, the variation trend of maximum vibration velocity of the measuring point showed an upward trend, but the subsequent vibration acceleration decreased. Under the condition of grade V surrounding rock, when the thickness of the concrete spray layer is 350 mm, the maximum displacement cumulative value of each measuring point in profile 1-1 is reduced by about 50.4% compared with that without support. According to the displacement nephogram of the concrete spray layer, the displacement of the concrete spray layer accumulates after three times of blasting, which affects the stability of the supporting structure. Finally, an example analysis is carried out and compared with the analytical model results to verify the accuracy of the mechanical model.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3