Affiliation:
1. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi Province, China
2. School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
Abstract
In Parkinson’s disease, the excess of beta oscillations in cortical-basal ganglia (BG) circuits has been correlated with normal movement suppression. In this paper, a physiologically based resonance model, generalizing an earlier model of the STN-GPe circuit, is employed to analyze critical dynamics of the occurrence of beta oscillations, which correspond to Hopf bifurcation. With the experimentally measured parameters, conditions for the occurrence of Hopf bifurcation with time delay are deduced by means of linear stability analysis, center manifold theorem, and normal form analysis. It is found that beta oscillations can be induced by increasing synaptic transmission delay. Furthermore, it is revealed that the oscillations originate from interaction among different synaptic connections. Our analytical results are consistent with the previous experimental and simulating findings, thus may provide a more systematic insight into the mechanisms underlying the transient beta bursts.
Funder
National Natural Science Foundation of China
Subject
Clinical Neurology,Neurology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献