Study on Interaction Mechanism of Natural Gas Pipe-Landslide System Reinforced by Micropile Groups Based on Model Test

Author:

Guan Wei12,Wu Honggang12ORCID,Wu Daoyong1,Tang Lin12,Wei Hong12

Affiliation:

1. College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China

2. China Northwest Research Institute Co. Ltd. of CREC, Lanzhou, Gansu 730000, China

Abstract

Natural gas pipeline projects in mountainous areas are inevitably affected by geological disasters such as landslides, which pose a serious threat to the safe operation of pipelines along the routes crossing landslide areas. In this paper, based on a pipe-landslide project in a mountainous area in southwest China, the interaction mechanism and failure evolution process of the landslide-pipeline system reinforced by two kinds of micropiles are studied through indoor large-scale physical model tests, and some suggestions on the support work of the pipe-landslide project are put forward according to the test results. It was found that the deformation process of the engineering system composed of landslide, micropile, and pipeline presents a high degree of synergy under the external force and mainly experiences four stages: initial deformation period, uniform deformation period, accelerated deformation period, and residual deformation period. The bending deformation of the perforated pipe micropile is large at the 1/4 position of the pile top from the pile bottom, and the deformation of the screw micropile near the sliding surface is serious. The pipeline welding port is the weak position of the pipeline; after the failure of the pile, the pipeline interface is first cracked, along the interface position along the two ends of the tear, and finally completely broken. The screw micropile cannot effectively resist the landslide thrust at a large load level, so the risk of pipeline damage is greater. The yield strength and ultimate strength of the perforated pipe micropile are greater than those of the screw micropile, and the perforated pipe micropile can still exert a certain residual resistance after reaching the ultimate bearing capacity, which has a beneficial effect on the reinforcement of the pipeline crossing the landslide system. The research results provide important reference value for landslide-pipeline treatment engineering.

Funder

Science and Technology R&D Project of Southwest Pipeline Co., Ltd., State Pipeline Group

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3